本文目录一览:
什么是矩阵的奇异值
奇异矩阵与矩阵的奇异值是两个概念,奇异矩阵是行列式等于0的矩阵,代表矩阵中有相关的行或列;而矩阵的奇异值类似于特征值,我理解的是代表矩阵的能量
在矩阵分析里,什么叫奇异值和奇异矩阵
奇异值是矩阵里的概念,一般通过奇异值分解定理求得。奇异值分解是线性代数和矩阵论中一种重要的矩阵分解法,适用于信号处理和统计学等领域。
奇异矩阵是线性代数的概念,就是该矩阵的秩不是满秩。
首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。
然后,再看此矩阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。
同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。 如果A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。如果A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。
扩展资料
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。
求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。
这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解。
参考资料:百度百科——奇异值
参考资料:百度百科——奇异矩阵
参考资料:百度百科——矩阵
矩阵的奇异值是个什么概念?
1、什么是奇异矩阵?
奇异矩阵是线性代数的概念,就是如果一个矩阵对应的行列式等于0,则该矩阵称为奇异矩阵。
2、如何判断一个矩阵是否是奇异阵呢?
(1)看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。
(2)看此方阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。
(3)由|A|≠0可知矩阵A可逆,可以得出另外一个重要结论:逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。 如果A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。如果A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。
(4)如果A(n×n)为奇异矩阵=A的秩Rank(A)n.
如果A(n×n)为非奇异矩阵= A满秩,Rank(A)=n.
3、奇异矩阵的特征:
(1)一个方阵非奇异当且仅当它的行列式不为零。
(2)一个方阵非奇异当且仅当它代表的线性变换是个自同构。
(3)一个矩阵半正定当且仅当它的每个特征值大于或等于零。
(4)一个矩阵正定当且仅当它的每个特征值都大于零。
矩阵的奇异值与特征值有什么相似之处与区别之处?
矩阵可以认为是一种线性变换,而且这种线性变换的作用效果与基的选择有关。 以Ax = b为例,x是m维向量,b是n维向量,m,n可以相等也可以不相等,表示矩阵可以将一个向量线性变换到另一个向量,这样一个线性变换的作用可以包含旋转、缩放和投影三种类型的效应。奇异值分解正是对线性变换这三种效应的一个析构。A=,和是两组正交单位向量,是对角阵,表示奇异值,它表示我们找到了和这样两组基,A矩阵的作用是将一个向量从这组正交基向量的空间旋转到这组正交基向量空间,并对每个方向进行了一定的缩放,缩放因子就是各个奇异值。如果维度比大,则表示还进行了投影。可以说奇异值分解将一个矩阵原本混合在一起的三种作用效果,分解出来了。而特征值分解其实是对旋转缩放两种效应的归并。(有投影效应的矩阵不是方阵,没有特征值) 特征值,特征向量由Ax=x得到,它表示如果一个向量v处于A的特征向量方向,那么Av对v的线性变换作用只是一个缩放。也就是说,求特征向量和特征值的过程,我们找到了这样一组基,在这组基下,矩阵的作用效果仅仅是存粹的缩放。对于实对称矩阵,特征向量正交,我们可以将特征向量式子写成,这样就和奇异值分解类似了,就是A矩阵将一个向量从x这组基的空间旋转到x这组基的空间,并在每个方向进行了缩放,由于前后都是x,就是没有旋转或者理解为旋转了0度。